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MarCO Mission Summary
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MarCO Mission Summary
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March 2016

Earth

1) Deploy MarCO-A & -B
from Tyvak Dispensers
(Twins for redundancy)

Centaur
Upper Stage

March 2016

MarCO-B
~ 1.5 m/s

MarCO-A
~ 1.5 m/s 180 deg

Technology Mission Objectives

Threshold

Miniaturized deep 
space radio (IRIS)

Successful uplink and downlink at 
multiple data rates + ranging

Flat Panel Antenna Receipt of telemetry at 8kbps

TCMs on a Cubesat Execution of TCM 1

Baseline

Cubesat in deep 
space

Viable operations beyond Earth 
orbit

Relay Bent-pipe during Insight EDL

2) Early Cruise Tech Demo 
Of Telecom and TCM 
Technologies

3) EDL Relay Demo
Real-time 8 kbps
Fly-by



MarCO Spacecraft
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MarCO Internal Components Overview
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Not shown: two coarse sun sensors



Key MarCO Body Vectors
Name Vector Use

TCM Delta-V Thrust Direction [0, 0, -1] Trajectory correction

Radiator Normal [0, -1, 0] Thermal management

Star Tracker Boresight [0, sin(10°), -cos(10°)] Attitude determination, 10°x12° FOV, 1024x1280 px

Solar Array Normal [0, 1, 0] Power generation, thermal management

High Gain Antenna Boresight [0, sin(22.7°), cos(22.7°)] High-rate communications with the DSN

Medium Gain Antenna Boresight [0, sin(22.7°), cos(22.7°)] Medium-rate communications with the DSN

Low Gain Antenna Boresight [0, 0, -1] Low-rate communications with the DSN

UHF Antenna Boresight [0, -1,  0] UHF relay

Narrow Angle Camera Boresight [0, -1, 0] Public relations, 3.4° half-angle FOV

Wide Angle Camera  Boresight [0, sin(62°), cos(62°)] HGA deployment verification, 77° half-angle FOV
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ACS/Prop Interface and Interaction 
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² All commands to propulsion system pass through the XACT
• Ground commands for XACT’s autonomous management of thrusters or for direct 

thruster actuation
• Onboard ACS Manager (ACSM) prevents multiple ACS commands from being sent at 

once and reduces complexity of larger command sequences by acting on flag toggling 



Propulsion System Overview
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TCM1 TCM2 TCM3 TCM4 TCM5 Total
Worst-
Case 

Estimate
22.70 8.40 2.40 0.42 0.11

Sum 34.03
Systems Margin 5.97

Total Capacity 40.00

Disturbance Torques Propellant Mass [g]
Momentum Management 150
Detumbling 50
Reaction Control Margin 100
Reaction Control Total 300
Delta-V Propellant Need 1200
Delta-V Margin 370
Unusable Propellant 30
Total Propellant 1900

Delta V Budget [m/s]
Propellant Mass Budget



TCM and RCS Thrusters
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• TCM thrusters are inner four thrusters (2, 3, 6, 7) provide axial force through off-pulsing
• RCS thrusters are used to correct for attitude excursions during DeltaV-mode firings
• DeltaV maneuvers require actuating the both tank/plenum valve and thruster valves
• DeltaV command requires both a total burn time across all thrusters and a wall-clock 

bound for the firings – duty cycle value informs the bound so that the specified 
accumulated burn time is reached before the cutoff



MarCO Ground Testbed 
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Comparison to FM:
- Separation Switch circuit like FM
- CDH/EPS/Interface Boards:  like FM
- Battery: like FM
- IRIS:  like FM1
- XACT:  like FM, but 1 CSS
- Propulsion System electronics only

Simulators
- XACT ACS simulator- Realtime Dynamics Processor (“RDP”)



Ground Testbed Test: Sun Pointing
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² Key safe mode functionality for 
ACS is to point the spacecraft to 
the sun to remain power positive

² RDP simulates the inputs to the 
sun sensors; SRU active but not 
included in estimator

² Base case: static spacecraft that 
must point to the sun

² Reaction wheels rotate the 
spacecraft to be stably sun-pointed 
within one minute of the command

² System momentum remained 
unchanged during the maneuver



Ground Testbed Test: Tipoff Control
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² More challenging sun point scenario 
occurs after deployment when the 
spacecraft could be tumbling

² Expected <2 deg/s/axis tipoff rates, 
so tested robustness to 30 deg/s/axis

• High rate above momentum storage 
capacity of reaction wheels

² Thrusters fire to reduce body 
rates/system momentum to level at 
which reaction wheels take over

• Reaction wheels not powered during 
thruster firings

² Achieve stable sun pointing within 
two minutes of command

² Serves as basic mission scenario test



Flight Data: First Telemetry

14

² First contact with the spacecraft 
was a pair of “beeps”

² Receive only (no commands sent) 
for five and seven minutes, 
respectively

² Each beep contained key telemetry 
to assess health of spacecraft

² Reaction wheel speeds indicate 
momentum stored after the 
desaturation if it was necessary 
and overall spacecraft attitude 
stability
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Flight Data: MCOA TCM2 Cleanup Maneuver

² TCMs performed in segments, with 
cleanup maneuvers for fine-tuning

² Off-pulsing thrusters is required for 
maintaining desired thrust direction

² Thruster controller is non-adaptive, so 
commanded thrust direction accounts 
for uncertainty in thrust levels and 
mass properties

² Spacecraft exhibits characteristic “nod” 
at start of burn, eventually corrected by 
reaction wheels at end of firing
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Key Lessons Learned

² Autonomous reaction wheel desaturations and directly commanded firings do not 
increment thruster accumulated burn times

² 2-phase propellant cannot use tank pressure as a metric for remaining fuel load
² TCM commands must account for controller accuracy to achieve desired pointing
² SRU can lose tracking lock from high rate slews and initial slew transients, which 

can lead to premature TCM cutoffs
² Parameterized fault protection values enable in-flight adjustments to tune 

spacecraft behaviors
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